predict_effector
is used to predict effector protein given amino acid protein sequences.
predict_effector(input, taxon)
# S3 method for character
predict_effector(input, taxon)
# S3 method for data.frame
predict_effector(input, taxon)
# S3 method for AAStringSet
predict_effector(input, taxon)
# S3 method for AAString
predict_effector(input, taxon)
# S3 method for default
predict_effector(input, taxon)
Input data that contains amino acid sequence(s). It can be in fasta format, strings, AAString, AAStringset, and dataframe.
Taxon group of input data. Available taxons are bacteria, fungi, and oomycete.
predict_effector
returns an object of class "tbl_deepredeff" or for multiple responses of class c("tbl_deepredeff", "data.frame").
An object of class "tbl_deepredeff" is a data frame containing at least the following components:
sequence
the sequence(s) from the input data.
s_score
score obtained from sigmoid function showing how likely the sequences to be an effector.
prediction
class prediction for each sequence, obtained from s_score. If the value of s_score
>= 0.5, it will be classified as an effector. Otherwise, it will be classified as a non-effector.
# \donttest{
# FASTA input
input_fasta <- system.file("extdata/example/fungi_sample.fasta", package = "deepredeff")
pred_result <- deepredeff::predict_effector(
input = input_fasta,
taxon = "fungi"
)
#> List of 22
#> $ python : chr "/usr/bin/python3"
#> $ libpython : chr "/usr/lib/python3.10/config-3.10-x86_64-linux-gnu/libpython3.10.so"
#> $ pythonhome : chr "//usr://usr"
#> $ pythonpath : chr "/home/runner/work/_temp/Library/reticulate/config:/usr/lib/python310.zip:/usr/lib/python3.10:/usr/lib/python3.1"| __truncated__
#> $ prefix : chr "/usr"
#> $ exec_prefix : chr "/usr"
#> $ base_exec_prefix : chr "/usr"
#> $ virtualenv : chr ""
#> $ virtualenv_activate : chr ""
#> $ executable : chr "/usr/bin/python3"
#> $ base_executable : chr "/usr/bin/python3"
#> $ version_string : chr "3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0]"
#> $ version : chr "3.10"
#> $ architecture : chr "64bit"
#> $ anaconda : logi FALSE
#> $ conda : chr "False"
#> $ numpy : NULL
#> $ required_module : chr "tensorflow"
#> $ required_module_path: NULL
#> $ available : logi TRUE
#> $ python_versions : chr [1:2] "/usr/bin/python3" "/usr/bin/python"
#> $ forced : NULL
#> - attr(*, "class")= chr "py_config"
#> Error: Python module tensorflow.keras was not found.
#>
#> Detected Python configuration:
#>
#>
# }