register()
is a function to register expression profiles a user
wishes to compare.
Arguments
- input
Input data frame containing all replicates of gene expression in each genotype at each time point.
- stretches
Candidate registration stretch factors to apply to query data, only required if
use_optimisation = FALSE
.- shifts
Candidate registration shift values to apply to query data, only required if
use_optimisation = FALSE
.- reference
Accession name of reference data.
- query
Accession name of query data.
- scaling_method
Scaling method applied to data prior to registration process. Either
none
(default),z-score
, ormin-max
.- overlapping_percent
Minimum percentage of overlapping time point range of the reference data. Shifts will be only considered if it leaves at least this percentage of overlapping time point range after applying the registration.
- use_optimisation
Whether to optimise registration parameters. By default,
TRUE
.- optimisation_method
Optimisation method to use. Either
"lbfgsb"
for L-BFGS-B (default),"nm"
for Nelder-Mead, or"sa"
for Simulated Annealing.- optimisation_config
Optional list with arguments to override the default optimisation configuration.
- exp_sd
Optional experimental standard deviation on the expression replicates.
- num_cores
Number of cores to use if the user wants to register genes asynchronously (in parallel) in the background on the same machine. By default,
NA
, the registration will be run without parallelisation.
Value
This function returns a res_greatR
object containing:
- data
a table containing the scaled input data and an additional
timepoint_reg
column after applying registration parameters to the query data.- model_comparison
a table comparing the optimal registration function for each gene (based on
all_shifts_df
scores) to model with no registration applied.- fun_args
a list of arguments used when calling the function.
Examples
if (FALSE) { # \dontrun{
# Load a data frame from the sample data
data_path <- system.file("extdata/brapa_arabidopsis_data.csv", package = "greatR")
all_data <- utils::read.csv(data_path)
# Running the registration
registration_results <- register(
input = all_data,
reference = "Ro18",
query = "Col0"
)
} # }